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Abstract

The recent discovery of inertial waves on the sur-
face of the Sun offers new possibilities to learn
about the solar interior. These waves are long-
lived with a period on the order of the Sun ro-
tation period (∼27 days) and are sensitive to
parameters deep inside the Sun. They are ex-
cited by turbulent convection, leading to a pas-
sive imaging problem. In this work, we present
the forward and inverse problem of reconstruct-
ing viscosity and differential rotation on the Sun
from cross-covariance observations of these iner-
tial waves.
Keywords: inverse problems, passive imaging,
inertial waves, partial differential equations.

1 Introduction

Helioseismology aims at recovering parameters
in the solar interior from surface observations
using mostly acoustic modes (eigenfunctions).
These modes have maximum sensitivity close to
the surface and inferring deep inside the Sun is
an extremely difficult task. The recent discov-
ery of many inertial modes [2] opens up new
opportunities for helioseismology. A linearized
analysis of purely toroidal (i.e. divergence-free)
modes on the surface of the Sun can already
explain several observed features, such as the
eigenfrequencies and eigenfunctions of Rossby
modes and of high-latitude modes [1]. We use
this forward model with an additional source to
take into account the stochastic excitation of the
waves, and solve an inverse problem to recover
the solar differential rotation and the viscosity.

As this source is stochastic, we approach
this from a passive imaging perspective; that
is, we replace the source by its auto-correlation,
which is an accessible entity known as the source
strength, leading to a higher-dimensional prob-
lem and exacerbated nonlinearity, for which spe-
cial strategies are required.

2 Solar inertial waves

We consider the dynamic of a moving particle in
an incompressible fluid. Its velocity v = v(r, t)
is described by the Navier-Stokes equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · (ργτ ) + f − 2Ωref × v.

The restoring forces on the right hand side in-
clude acoustic pressure p, viscous stress τ :=
∇v + (∇v)T and external source f (e.g. ran-
dom source); ρ denotes density. The Coriolis
force (2Ωref ×v) results from observing the Sun
in a rotating reference frame, often chosen as
the Carrington frame with the angular velocity
Ωref = 14.70/days.

We decompose v into a background flow u0

and a perturbation (wave field) u in spherical
coordinates

v = u0 +u, u0 := (Ω(r, θ)−Ωref)[0; 0; r sin θ],

and suppose that the fluid is strongly strati-
fied [3]. Considering the horizontal motion and
expressing it via the stream function Ψ yields

ρu = ∇×Ψ, Ψ := [Ψ(t, θ, ϕ); 0; 0].

In the frequency-latitude wave number domain,
i.e. for each (ω,m), the inertial oscillation satis-
fies the scalar equation on I := (0, π)

− γ∆2
mΨ− iω∆mΨ+ imβ∆mΨ− imαΨ = f

with γ ∈ R, β(θ) := Ω(θ)− Ωref θ ∈ I

α(θ) :=
1

r2 sin θ

d

dθ

(
1

sin θ

d

dθ
(Ω(θ) sin2 θ)

)
,

∆mΨ :=
1

r2 sin θ

d

dθ

(
sin θ

d

dθ
Ψ

)
− m2

r2 sin2 θ
Ψ,

(1)

where ∆m is the Laplace-Beltrami operator on
the sphere. Supposing that the flow is continu-
ous at the poles, we endow at the boundaries

Ψ(0) = Ψ(π) = 0, Ψ′(0) = Ψ′(π) = 0. (2)
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The system (1)-(2) is the underlying model for
the inverse problem of recovering viscosity γ and
differential rotation β. Equation (1) reduces to
that studied in [3] if γ = 0 and in [1] if f = 0.

3 Correlation-based passive imaging

On the Sun, the source of excitation f is pas-
sive, i.e. ambient noise near the surface of the
convection zone. Consequently, the oscillation
Ψ is a realization of a random wave. If f is
spatially uncorrelated with E[f ] = 0, then its
cross-correlation between two locations is

Cov[f, f ](θ, θ′) = E[f(θ)f(θ′)] =: Πf (θ)δ(θ − θ′),

where (·) denotes the complex conjugate, δ is
the Dirac function, and Πf represents the source
strength. In this spirit, averaging J correlated
wave fields acquired separately yields

Cov[Ψ,Ψ] ≈ Cov(Ψ)(θ, θ′) :=
1

J

J∑
j=1

Ψj(θ)Ψj(θ′),

referred to as the empirical reprocessed data. It
is important to note that the source term f
is typically not available, with only the source
strength Πf assumed known.

We formulate the passive imaging problem
for solar viscosity and differential rotation as

Find (γ, β) ∈ R×X : Cov(Ψ) = yobs

s.t. Ψ solves (1)-(2)

given Πf and noisy observed data yobs.

4 Inversion numerical results

We implemented an accelerated Nesterov Landwe-
ber algorithm to simultaneously reconstruct the
scalar viscosity γ and latitude-dependent rota-
tion β from a single frequency-latitude wave num-
ber.

Figure 1 shows the reconstruction results (top)
and the corresponding covariance images (bot-
tom). We initiate the algorithm with βinit = 0,
i.e. no prior knowledge, and γinit very far from
the ground truth. Despite this, the reconstruc-
tion approximates the ground truth extremely
well. The algorithm required 200 iterations over
2 seconds on an i7-1255U CPU (4.70 GHz).

Outlook. Going forward, we will perform imag-
ing with solar-like parameters and real data ac-
quired from the Helioseismic and Magnetic Im-
ager on board the Solar Dynamics Observatory.
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Figure 1: Simultaneous reconstruction of viscos-
ity/rotation (top) and resulting covariance im-
ages (bottom).
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